

EUROPEAN UNION European Regional Development Fund

SEABASED Sediment removal

26.1.2021

Irma Puttonen, Pekka Paavilainen & Janne Suomela

Pilot site selection

-61°N

-60°N

Preconditions defined

40 Km

22°F

61°N

60°N

Exploration of potential pilot sites
 across the Archipelago Sea

Hålax vik selected as a pilot site for sediment removal

- Restricted water exchange due to a threshold in the mouth of the bay
- Sediment accumulation and oxygen depletion in the bottom
- Phosphorus release from the sediment
- High phosphorus concentration in the water
- High primary production
- No zoobenthos in the deepest parts
- Previous water quality data available
- Excellent co-operation with the local inhabitants

Planning of sediment removal

- Exploration and finding solutions for
 - removal
 - deposition
 - recycling of the sediment
- Challenges:
 - Marine scale
 - High water content of sediment
 - Logistical issues
 - Infrastructure construction
 - Lack of competition, new technical solutions needed

Pilot implementation

Cost of sediment removal too high

Replaced by a sediment incubation test in a laboratory

Will sediment removal change

- Biological oxygen demand in the sediment?
- Nutrient fluxes (particularly phosphorus) to and from the sediment?

Results of the sediment incubation test

Sediment *BOD₇ declined with sediment depth * indicates how much oxygen micro-organisms need for breakdown of organic matter in seven days

Sediment removal moderated oxygen demand

25 cm sediment removal lowered phosphate concentrations in the water

Change in supernatant P concentration depended on initial concentration in the test

Nitrogen concentrations in the water did not show detectable trend

Theoretical removal of nutrients

• Removing 10 cm thick sediment layer per hectare in Hålax vik:

150kg Phosphorus 1150 kg Nitrogen 7900 Carbon/7700 kg OC

- Based on average data on sediment and water chemistry in Hålax vik
- Amount of nutrient removal is site-specific

Sustainability

Careful planning

- Risk assessment
- Environmental monitoring
- ➢Permit procedure
- Transparent public procurement (in our case)
- Communication and informing
 - Local people, authorities, entrepreneurs

Summary

Expensive, many challenges

Marine scale	Depth and extent of baysLogisticsConstructing infrastructure	
Sediment removal	 10 cm insufficient Costly with available solutions, lack of competition New, affordable technical solutions needed for the whole process 	
Sediment deposition	 Steep, rocky coast Recycling Geotube applications Possible sediment pollution 	

EUROPEAN UNION European Regional Development Fund

Contact:

Janne Suomela Senior Specialist janne.suomela@ely-keskus.fi +358 295 022 947 Irma Puttonen Project Coordinator irma.puttonen@ely-keskus.fi +358 295 022 801

Pekka Paavilainen Senior Officer pekka.paavilainen@ely-keskus.fi +358 295 022 921

www.seabasedmeasures.eu www.ymparisto.fi/SEABASED

