

Pilot: Nutrients from Sea to Field

26.1.2021

What did we do?

- Irrigation of fields with nutrient-rich brackish water from bays with bad ecological status
- Win-win solution
- Summer 2019 and 2020
- Monitoring: bay water, irrigation water, ley (grass), soil, and groundwater

Kaldersfjärden

- Max depth 6.3 m
- Stratified
- Organic ley
- No fertilization
- Water inlet at 3,5 m
- Irrigation:
 2019, 4 x 40 mm
 2020, 4 x 40 mm

Pilot sites

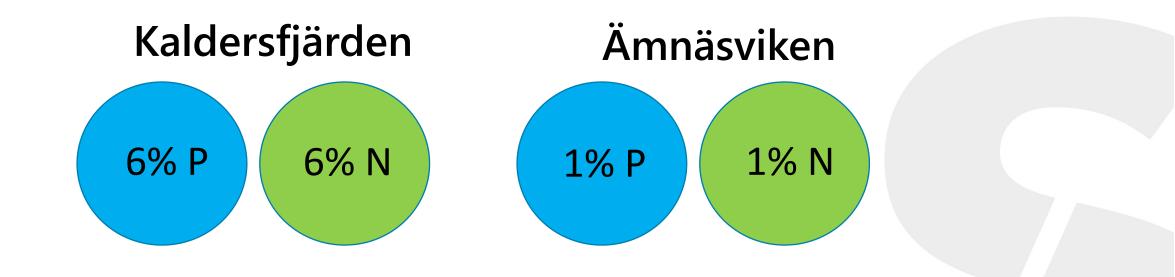
Ämnäsviken

- Max depth 2.9 m
- Wind-mixed
- Ley
- Artificial fertilizer
- Water inlet at 0,5 m
- Irrigation:
 2019, 2 x 40 mm
 2020, 1 x 35 mm and
 1 x 30 mm

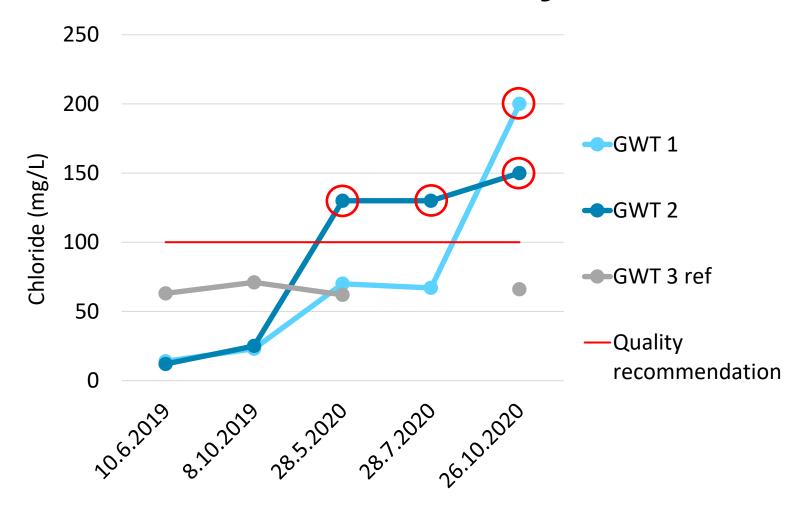
Field by Kaldersfjärden

Field by Ämnäsviken

Nutrients from the sea...



Removal vs. needed removal


- Simplified calculations made with SMHI "Coastal Zone Model"
- <u>Indication</u> on N and P removal need to achieve "good ecological status" (WFD goal)

...to the fields

Field	N (kg/ha)	P (kg/ha)	Salt (kg/m²)	
Kaldersfjärden	5,9	0,5	1,0	
Ämnäsviken	2,0	0,2	0,8	

Groundwater analyses

Increase in chloride concentration in the groundwater at the pilot area by Ämnäsviken

Quality recommendation: < 100 mg/L for private wells

Soil analyses

Soil fertility classes?

No apparent distinction between pilot and control sites

Reduction in cations?

No apparent distinction between pilot and control sites (Slight increase in Na at pilot site)

Reduction in PO_4^{3-} ?

No apparent distinction between pilot and control sites

(slight increase in Fe at pilot site)

Chloride accumulation?

Higher chloride content at pilot site (washes out of soil with precipitation)

Crops analyses (silage)

- Similar characteristics between pilot and control site
- Lower amount of dry matter from pilot site
- Lower content of sugar from pilot site
- Higher content of Na in silage from pilot site

Increase in crop production

Bay	Production increase	
Kaldersfjärden	40–170%	
Ämnäsviken	60–70%	

Visual results, Kaldersfjärden 2019

No irrigation

Irrigation 4 x 40 mm

Happy project coordinator and farmer

Recommendations

- Brackish water can be used for irrigation of ley, but with caution for salinization of soil and groundwater
- Investigate the run-off pattern
- Do not irrigate continuously year after year, let the soil and groundwater restore itself
- Preferably during dry summers, as a life support for crops
- If possible, collect samples for chloride analyses; soil, groundwater (wells)
- Collect soil samples more often than the regular 5-year interval

Contact:

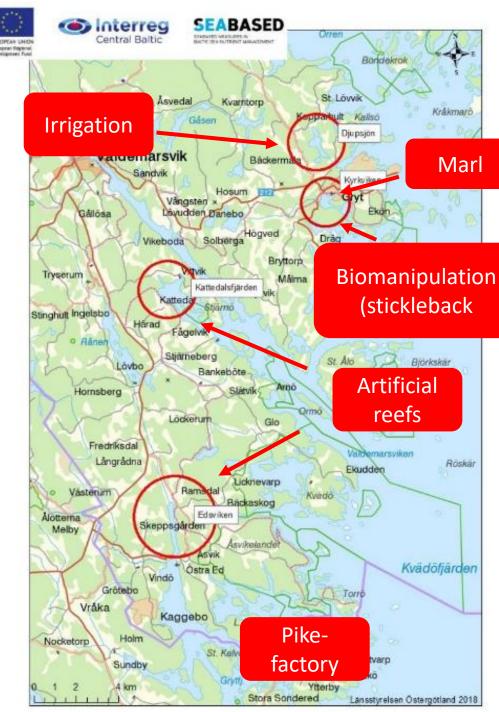
Annica Brink, Project Coordinator Government of Åland annica.brink@regeringen.ax

www.seabasedmeasures.eu

CAB Östergötland- Project results

Maria Gustavsson & Kenneth Winroth

26.1.2021



Pilot areas in Östergötland

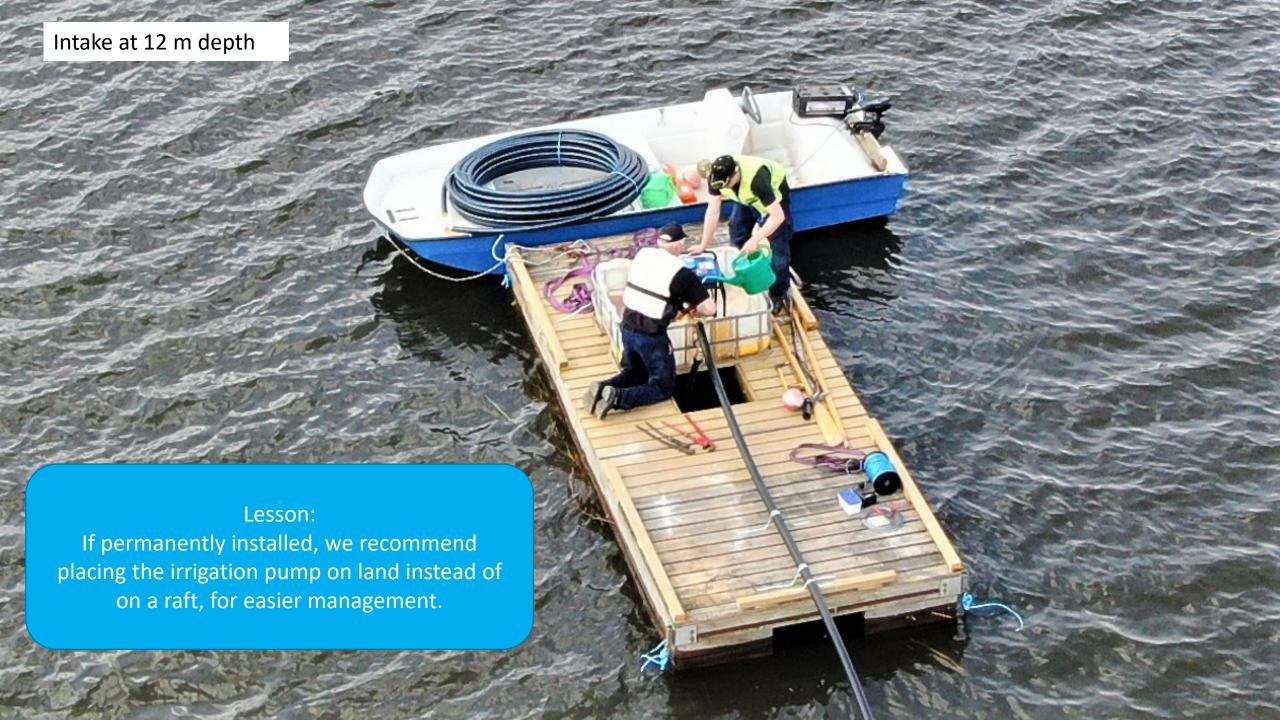
- Kyrkviken (SE580890-165500)
- Djupsjön (SE645330-155839)
- Edsviken (SE580250-164000)
- Kattedalsfjärden (SE580585-164720)

Results in Djupsjön: Irrigation

- 2 test sites, surface & bottom water
- 4 irrigations, 2 harvests

Results in Djupsjön: Irrigation

40 mm á 4 times -> 160 liters/m²


Phosphorous content in water				
Bottom	Surface			
200-340 μg/l	Ca 30 μg/l			
Gives	Gives			
32-58 mg P/m ²	Ca 4,8 mg P/m ²			
Removed from the Lake 2020	Removed from the Lake 2020			
48-64 g phosphorous	Ca 7 g phosphorous			

Implications				
Bottom	Surface			
200-340 μg/l	Ca 30 μg/l			
Per ha	Per ha			
0,38-0,58 kg P/year	0,048 kg P/year			
Per field (á 10 ha)	Per field (á 10 ha)			
3,8-5,8 kg P/year	0,48 kg P/year			

Conclusion:

Quite effective to use bottom water instead of surface water.

Contact:

Maria Gustavsson: <u>maria.b.gustavsson@lansstyrelsen.se</u> Kenneth Winroth: <u>kenneth.Winroth@lansstyrelsen.se</u>

www.seabasedmeasures.eu

